Эквивалентное последовательное сопротивление конденсатора

Формула емкостного сопротивления

Для того чтобы определиться с ёмкостным сопротивлением в той или иной схеме, потребуется выявить следующие параметры:

  • Частота протекающего в цепочке переменного тока;
  • Номинальное значение ёмкости конденсатора;
  • Наличие в цепи других радиотехнических элементов.

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле:

Xс=1/ ω C.

Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Благодаря такому характеру его изменения, конденсаторы могут работать в следующих частотно-зависимых схемах:

  • Интегральные и дифференциальные устройства;
  • Резонансные цепочки различного класса;
  • Специальные фильтрующие элементы.

Добавим к этому возможность использования конденсаторов в качестве демпферных элементов в цепи переменного тока, нагруженной на мощные (силовые) агрегаты.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  – резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, “активный  – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Что такое ESR (ЭПС)?

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Так как ЭПС наиболее сильно влияет на работу алюминиевых электролитических конденсаторов, то в дальнейшем речь пойдёт именно о них. Сейчас мы разберём электролитический конденсатор по косточкам и узнаем, какие же тайны он скрывает.

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Условная схема реального конденсатора

Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов, электролита и контактного сопротивления вывод – обкладка. На фото видно, как проволочные выводы крепятся к обкладкам методом заклёпочного соединения.

Крепление выводов к обкладкам конденсатора

Разобранный электролитический конденсатор

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.

Выводы электролитического конденсатора

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

  • Сопротивление электролита. Вносит основную долю в величину ЭПС. Увеличивается из-за испарения растворителя и изменения химического состава электролита вследствие взаимодействия его с металлическими обкладками. Идеальная формула электролита пока не найдена, поэтому до сих пор аппаратуру выкашивает «конденсаторная чума» (англ. «Capacitor plague»);

  • Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;

  • Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;

  • Контактное сопротивление между обкладками и выводами.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.

А если ESR – это, по сути, сопротивление, то на нём при протекании импульсов тока будет выделятся тепло. Вспомните о мощности резистора. Таким образом, чем больше ЭПС – тем сильнее будет греться конденсатор.

Нагрев электролитического конденсатора – это очень плохо. Из-за нагрева электролит начинает закипать и испаряться, конденсатор вздувается. Наверное, уже замечали на электролитических конденсаторах защитную насечку на верхней части корпуса.

Защитная насечка в верхней части корпуса конденсатора

При длительной работе конденсатора и повышенной температуре внутри его электролит начинает испаряться, и давить на эту насечку. Со временем давление внутри возрастает настолько, что насечка разрывается, высвобождая газ наружу.

Хлопнувший электролит на плате стабилизированного блока питания
«Хлопнувший» конденсатор на плате блока питания (причина — превышение допустимого напряжения)

Защитная насечка также предотвращает (или ослабляет) взрыв конденсатора при превышении на его обкладках допустимого рабочего напряжения или при переполюсовке – подаче на него напряжения обратной полярности.

На практике бывает и наоборот – давление выталкивает изолятор со стороны выводов. Далее на фото показан конденсатор, который высох. Ёмкость его снизилась до 106 мкФ, а ESR при измерении составило 2,8Ω, тогда как нормальное значение ESR для нового конденсатора с такой же ёмкостью лежит в пределах 0,08 – 0,1Ω.

Неисправный конденсатор

Электролитические конденсаторы выпускают на разную рабочую температуру. У алюминиевых электролитических конденсаторов нижняя граница температуры начинается с — 60°С, а верхняя ограничена +155°С. Но в большинстве своём такие конденсаторы рассчитаны на работу в температурном диапазоне от -25°С до 85°С и от -25°С до 105°С. На этикетке иногда указывается только верхний температурный предел: +85°С или +105°С.

Наличие ЭПС в реальном электролитическом конденсаторе влияет на его работу в высокочастотных схемах. И если для обычных конденсаторов это влияние не столь выражено, то вот для электролитических конденсаторов оно играет весьма важную роль. Особенно это касается их работы в цепях с высоким уровнем пульсаций, когда протекает существенный ток, и за счёт ESR выделяется тепло.

Взгляните на фото.

Вздувшиеся электролитические конденсаторы на материнской плате компьютера
Вздувшиеся электролитические конденсаторы (причина — длительная работа при повышенной температуре)

Это материнская плата персонального компьютера, который перестал включаться. Как видим, на печатной плате рядом с радиатором процессора расположено четыре вздувшихся электролитических конденсатора. Длительная работа при повышенной температуре (внешний нагрев от радиатора) и приличный срок эксплуатации привёл к тому, что конденсаторы «хлопнули». Виной тому – нагрев и ESR. Плохое охлаждение отрицательно сказывается не только на работе процессоров и микросхем, но, как оказывается, и на электролитических конденсаторах!

Снижение температуры окружающей среды на 10°C продлевает срок службы электролитического конденсатора почти вдвое.

Аналогичная картина наблюдается в отказавших блоках питания ПК – электролитические конденсаторы также вздуваются, что приводит к просадке и пульсациям напряжения питания.

Вздувшиеся конденсаторы на плате блока питания ATX от ПК
Неисправные конденсаторы в БП ПК ATX (причина — низкое качество конденсаторов)

Нередко из-за длительной работы импульсные блоки питания точек доступа, роутеров Wi-Fi, всевозможных модемов также выходят из строя по причине «хлопнувших» или потерявших ёмкость конденсаторов. Не будем забывать, что при нагреве электролит высыхает, а это приводит к снижению ёмкости. Пример из практики я описывал здесь.

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии конденсаторов с низким ESR и низким импедансом. На таких конденсаторах, как правило, присутствует надпись Low ESR или Low Impedance (Low Imp). Что, соответственно, означает, – низкое ЭПС, низкий импеданс. Также существуют серии с ультранизким ЭПС и ультранизким импедансом (Ultra Low ESR, Ultra Low Impedance).

Известно, что конденсатор обладает ёмкостным или реактивным сопротивлением, которое снижается с ростом частоты переменного тока.

Таким образом, с ростом частоты переменного тока, реактивное сопротивление конденсатора будет падать, но только до тех пор, пока оно не приблизится к величине эквивалентного последовательного сопротивления (ESR). Его то и необходимо измерить. Поэтому многие приборы – измерители ESR (ESR-метры) измеряют ЭПС на частотах в несколько десятков – сотен килогерц. Это необходимо для того, чтобы «убрать» величину реактивного сопротивления из результатов измерения.

Стоит отметить, что на величину ESR конденсатора влияет не только частота пульсаций тока, но и напряжение на обкладках, температура окружающей среды, качество изготовления. Поэтому однозначно сказать, что ESR конденсатора, например, равно 3 омам, нельзя. На разной рабочей частоте величина ESR будет разной.

ESR-метр

При проверке конденсаторов, особенно электролитических, стоит обращать внимание на величину ESR. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На фото универсальный тестер радиокомпонентов (LCR-T4 Tester) функционал которого поддерживает замер ESR конденсаторов.

LCR T4 тестер

В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки конденсаторов из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

При ремонте электроники приходится часто менять электролитические конденсаторы. При этом для оценки их качества измеряются такие параметры, как ёмкость и ESR. Чтобы было с чем сравнивать, была составлена таблица ESR, в которой указано ЭПС новых электролитических конденсаторов разных ёмкостей. Данную таблицу можно использовать для оценки пригодности того или иного конденсатора для дальнейшей службы. Но, с одной оговоркой…

Не стоит забывать о том, что «эталонные» данные по величине ESR приводятся в даташитах на конкретную серию конденсаторов. Так что, иногда лучше свериться с информацией, полученной «из первых рук». Здесь лишь следует учесть то, что производители для замера ESR могут использовать иное оборудование, чем вы, и, поэтому, итоговые показания всё равно будут отличаться, пусть, и незначительно.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Свойства электролитических конденсаторов.

  • Правильное соединение конденсаторов.

  • Как узнать ёмкость конденсатора по его маркировке?

Индуктивное сопротивление

Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.

Само сопротивление обычно классифицируют следующим образом:

  • зависящее от параметров тока и материала — внутреннее;
  • обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.

Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.

Данный параметр обычно определяется следующим выражением:

в котором индуктивный показатель для 1 км провода – , а L – протяженность.

Х километрового участка рассчитывается по следующей формуле:

Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.

Векторное представление ёмкости

Для получения более чёткого представления о том, что такое ёмкостное сопротивление, можно воспользоваться векторным представлением протекающих в конденсаторе процессов.

Векторное представление

Векторное представление

После изучения диаграммы можно заметить, что ток в цепи конденсатора меняет фазу с опережением напряжения на 90 градусов. Из характера взаимодействия основных электрических величин делается вывод о том, что конденсатор оказывает сопротивление изменению напряжения на нём.

Чем больше ёмкость, тем медленнее происходит её перезарядка до полного напряжения (и тем меньше ёмкостное сопротивление данного элемента). Этот вывод полностью совпадает с приведённой ранее формулой.

Дополнительная информация. При исследовании включенных в цепи переменного тока индуктивностей обнаруживается обратная закономерность, когда ток, наоборот, отстаёт по фазе от изменений напряжения.

Отметим, что в обоих случаях наблюдаемые различия в фазных параметрах указывают на реактивный характер сопротивления этих элементов.

Причины ёмкостного сопротивления

Причиной возникновения сопротивления емкостного считается уровень напряжения, возникающий на конденсаторе в процессе его заряда. Вектор его действия встречен вектору напряжения источника электричества, потому создает помеху воспроизведению электротока этим источником.

Емкость в цепи переменного тока

При подаче на конденсатор постоянного напряжения он постепенно зарядится до максимальной разности потенциалов на его обкладках. После этого ток через электронный компонент прекратится и, не считая ничтожной утечки, будет равняться нулю. Поэтому в цепи постоянного тока конденсатор имеет огромное сопротивление. При расчетах его величину принимают равной бесконечности.

Реактивное сопротивление имеет вполне исчисляемое значение. Его можно измерить с помощью осциллографа, генератора и постоянного резистора. Для этого потребуется собрать схему. В ней конденсатор образует с резистором делитель напряжения. С помощью осциллографа будет измеряться потенциал, который образуется на выводах ёмкости.

Для данной схемы вычисления имеют следующий вид.

Формула косвенного измерения

Формула косвенного измерения

Здесь:

  • Ur – разность потенциалов на резисторе, В;
  • Uc – напряжение на обкладках, В;
  • R – сопротивление резистора, ом;
  • Xc – сопротивление ёмкости, ом;
  • I – ток, протекающий в цепи, А.
Косвенное измерение

Косвенное измерение

Важно! Электрический кабель также обладает ёмкостью. Поэтому после снятия напряжения на нём остаётся некоторый заряд. Данное явление опасно для человека, особенно, если проводник до отключения находился под потенциалом 1000 В и выше.

Единицы измерения

Для правильного проведения всех расчетов важно понимать, какие величины в них используются, и что они обозначают:

  • Ёмкость – ед. изм. фарад, Ф;
  • Напряжение – вольт, В;
  • Сопротивление, в т.ч. и реактивное – ом, Ом;
  • Частота – герц, Гц;
  • Ток – ампер, А.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2 ) ½.

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

Стоит почитать: все об электролитических конденсаторах.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (50002+32002)½ = 5 936 Ом =5,9 кОм.

Формула расчёта сопротивления конденсатора

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей. Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C.

RC цепь

RC цепь

Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов. Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU. Здесь U – напряжение источника питания.

Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

Сопротивление – это одна их характеристик конденсатора, подключенного к цепи переменного тока. Понимание процессов, происходящих с этим элементом в подобных схемах, существенно расширяет сферу его использования. Реактивное сопротивление конденсаторов учитывается как в простых бытовых электроприборах, так и в сложной вычислительной технике.

Заключение

В данной статье были рассмотрены основные вопросы расчета сопротивления конденсаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике “Что такое конденсаторы”

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.amperof.ru

www.eduspb.com

www.beasthackerz.ru

www.electroandi.ru

www.websor.ru

Предыдущая

КонденсаторыСколько стоят керамические конденсаторы?

Следующая

КонденсаторыЧто такое ионистор?

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

реактивное сопротивление катушки

где

ХL –  реактивное сопротивление катушки, Ом

П – постоянная и приблизительно равна 3,14

F – частота, Гц

L – индуктивность, Генри

Видео

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-214’, renderTo: ‘yandex_rtb_R-A-263154-214’, async: true }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80435] = «

«;cachedBlocksArray[80432] = «

«;cachedBlocksArray[80429] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-181’, renderTo: ‘yandex_rtb_R-A-263154-181’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘display:block;text-align:center;width:660px;height:420px;’ g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘6458750303’); g.setAttribute(‘data-ad-format’, ‘Rectangle’); g.setAttribute(‘data-ad-layout’, ‘true’); g.setAttribute(‘data-full-width-responsive’, ‘in-article’); document.getElementById(‘yandex_rtb_R-A-263154-181’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80428] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-180’, renderTo: ‘yandex_rtb_R-A-263154-180’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘width:580px;height:400px;top:0;right:0;bottom:0;left:0;margin:auto;display:block;’; g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘5810429370’); document.getElementById(‘yandex_rtb_R-A-263154-180’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80427] = «

«;cachedBlocksArray[80426] = «

«;cachedBlocksArray[80425] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-162’, renderTo: ‘yandex_rtb_R-A-263154-162’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘width:580px;height:400px;top:0;right:0;bottom:0;left:0;margin:auto;display:block;’; g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘2323428743’); document.getElementById(‘yandex_rtb_R-A-263154-162’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80424] = «

«;cachedBlocksArray[80423] = «

«;cachedBlocksArray[80422] = «

«;cachedBlocksArray[80441] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-217’, renderTo: ‘yandex_rtb_R-A-263154-217’, async: true }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80434] = «

«;cachedBlocksArray[80433] = «

«+»ipt>

(adsbygoogle = window.adsbygoogle || []).push({});

«+»ipt>»;

Оценка статьи:

1 звезда2 звезды3 звезды4 звезды5 звезд

(голосов:

3

, средняя оценка:

2,67

из 5)

loading.gif

Загрузка…

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...